Endpoint	Genotoxicity in vitro comet assay			
Endpoint description	Genotoxicity – genotoxic effect in mammalian cell lines using comet assay performed according to scientifical including those described in Collins, A., Møller, P., Gajski, with the comet assay: a compendium of protocols. Nat			
Nanoform	TiO ₂			
Data quality control	The QSAR model utilizes extracted literature data subje the evaluation of: i) relevance of the test material, ii) re and iii) relevance of genotoxicity studies.			
Type of model	L-PCA + KNN			
Descriptors	The model includes descriptors of nanoform physicoch line characteristics.			
Dataset	positive negative	training set 69 19	validation set 18 5	total
Statistics	accuracy precision recall F1 score MCC	training set 0.977 1.000 0.971 0.985 0.937	validation set 0.870 0.895 0.944 0.919 0.592	
Inclusion criteria to applicability domain	Chemical composition of nanoform: ' TiO_2 ' Shape of nanoform: 'spherical' Crystal structure: 'anatase' OR 'rutile' OR 'anatase+rutile' Surface area, value up to: 343.7 Minimum particle size, range: $3.9 - 142.0$ Mean particle size, range: $3.9 - 280.0$ Maximum particle size, range: $4.0 - 400.0$			

nes treated in vitro with TiO₂ nanoforms, cally valid, recognized protocols, ski, G. et al. Measuring DNA modifications at Protoc 18, 929–989 (2023).

jected to a quality control including reliability of genotoxicity studies,

chemical characteristics and cell

Genotoxicity in vitro comet assay			
Genotoxicity – genotoxic effect in mammalian cell line using comet assay performed according to scientifica including those described in Collins, A., Møller, P., Gajski with the comet assay: a compendium of protocols. Nat			
SiO ₂			
The QSAR model utilizes extracted literature data subject the evaluation of: i) relevance of the test material, ii) re and iii) relevance of genotoxicity studies.			
L-PCA + Decision tree			
The model includes descriptors of nanoform physicoch line characteristics.			
positive negative	training set 34 18	validation set 9 4	tota 65
accuracy precision recall F1 score MCC	training set 0.865 0.966 0.824 0.889 0.736	validation set 0.769 0.800 0.889 0.842 0.426	
Chemical composition of nanoform: 'SiO ₂ ' Shape of nanoform: 'spherical' Surface area, value up to: 450.0 Minimum particle size, range: 5.0 - 166.1 Mean particle size, range: 6.0 - 169.2 Maximum particle size, range: 6.0 - 172.3			
	in vitro com Genotoxicity using come including th with the cor SiO ₂ The QSAR m the evaluati and iii) relevant L-PCA + Dea The model i line charact positive negative accuracy precision recall F1 score MCC	in vitro comet assay Genotoxicity – genotoxic eff using comet assay perform including those described ir with the comet assay: a cor SiO ₂ The QSAR model utilizes extra the evaluation of: i) relevand and iii) relevance of genoto L-PCA + Decision tree The model includes description line characteristics. training set positive 34 negative 18 training set accuracy 0.865 precision 0.966 recall 0.824 FI score 0.889 MCC 0.736 Chemical composition of name Shape of nanoform: 'spherical Surface area, value up to: 450	in vitro comet assay Genotoxicity – genotoxic effect in mammalian using comet assay performed according to so including those described in Collins, A., Møller, I with the comet assay: a compendium of proto SiO ₂ The QSAR model utilizes extracted literature do the evaluation of: i) relevance of the test mate and iii) relevance of genotoxicity studies. L-PCA + Decision tree The model includes descriptors of nanoform p line characteristics. training set validation set positive 34 9 negative 18 4 training set validation set accuracy 0.865 0.769 precision 0.966 0.800 recall 0.824 0.889 Fl score 0.889 0.842 MCC 0.736 0.426 Chemical composition of nanoform: 'SiO ₂ ' Shape of nanoform: 'spherical' Surface area, value up to: 450.0

nes treated in vitro with SiO₂ nanoforms, cally valid, recognized protocols, ski, G. et al. Measuring DNA modifications lat Protoc 18, 929–989 (2023).

jected to a quality control including reliability of genotoxicity studies,

chemical characteristics and cell